Առաջադրանք 1

Կենսաինֆորմատիկա և կենսաստատիստիկա

Տևողությունը՝ 60ր

Այս առաջադրանքի համար կարող եք ստանալ առավելագույնը **50 միավոր**։ Առաջադրանքը կազմված է **3** անկախ մասերից.

1) Նուկլեոտիդային հաջորդականության հավասարեցում **(8 միավոր)**

2) Ծայրամասային արյան միակորիզ բջիջների դասակարգումը տրանսկրիպտոմային տվյալների հիման վրա **(28 միավոր)**

3) Մարգագետնային բույսերի տեսակային կազմի ուսումնասիրությունը **(14 միավոր)**

Անհրաժեշտ պարագաներ՝

- 1. Համակարգիչ
- Սույն առաջադրանքի հավելված 1-ը, որը պարունակում է աշխատանքում օգտագործվող համակարգչային եզրույթներ (1 էջ)
- Սույն առաջադրանքի հավելված 2-ը, որը ծանոթագրություն է գեների ֆունկցիոնալ (գործառութային)
- 4. Պատասխանների թերթիկ

Մաս 1. (8 միավոր) Նուկլեոտիդային հաջորդականության հավասարեցում

Հաջորդականությունների հավաասարեցումը մեթոդ է, որի էությունը երկու կամ ավելի ԴՆԹ-ի, ՌՆԹ-ի կամ սպիտակուցային *հաջորդականությունների տեղադրումն է իրար տակ այնպես, որ պարզ երևան այդ հաջորդականությունների նման հատվածները*։ Մոլեկուլների առաջնային կառուցվածքների նմանությունը կարող է վկայել դրանց ֆունկցիոնալ, կառուցվածքային կամ էվոլյուցիոն կապերի մասին։ Սպիտակուցային կամ նուկլեոտիդային հավասարեցված հաջորդականությունները սովորաբար ներկայացվում են մատրիցի տեսքով, որտեղ յուրաքանչյուր հաջորդականությունը մեկ տող է։ Այդպիսի մատրիցի օրինակ ներկայացված է ստորն։

Կենսաբանական հետազոտության մեջ օգտագործվող հաջորդականությունները հաձախ շատ երկար են։ Այդ պատձառով դրանց հավասարեցումը, հավասարեցման գնահատումը և հաջորդիվ գործողությունները հնարավոր է իրականացնել միայն համակարգչային մեթողների կիրառմամբ։ Այս առաջարդանքում կկիրառեք MEGA (Molecular Evolutionary Genetics Analysis) ձրագիրը հաջորդականությունները հավասարեցնելու համար։

Այս առաջարդանքում ձեզ տրված են *Gecko (զեկոնի), Elapsoidea semiannulata (օձի), Brachylophus fasciatus isolate (իզուանի), Lacerta agilis-ի (Ճարպիկ մողեսի) և Ophisaurus ventralis (արևելյան թափանցամաշկ մողեսի)* cytB գենի սեկվենավորված հաջորդականությունները, որոնք պահվում են sequences.fas ֆայլում։ Կատարեք այդ հաջորդականությունների հավասարեցումը` օգտվելով <u>ընթացակարգ 1</u>-ից։

ԸՆԹԱՅԱԿԱՐԳ 1. Հաջորդականությունների հավասարեցումը MEGA (Molecular Evolutionary Genetics Analysis) ձրագիրի ClustalW ալգորիթմով (հրամանների թարգմանությունները տես սույն աշխատանքի հավելված 1-ում)

1. Ակտիվացրեք MEGA7 ծրագիրը՝տանելով մկնիկի կուրսորը համակարգչի էկրանի MEGA7 պատկերակի (տես ստորն) վրա և երկու անգամ սեղմեք ձախ ստեղնը։ Կբացվի MEGA-ի հիմնական պատուհունը։

MEGA7-ի պատկերակը

- MEGA-ի հիմնական պատուհունի մեջ սեղմեք *Align* ներդիրը և ընտրեք *Edit/Build Alignment* հրամանը։
- Ընտրեք *Create New Alignment* և սեղմեք *Ok*։ Կբացվի պատուհան, որը հարցնում է "Are you building a DNA or Protein sequence alignment?"։ Սեղմեք "DNA " կոձակը։ Կբացվի *Alignment Explorer* ենթապատուհանը։
- 4. Alignment Explorer-h գլխավոր պատուհանից ընտրեք Data ներդիրի Open խմբի Retrieve sequences from File հրամանը։ Կբացվի պատուհան, որը հարցնում է "Save the current alignment session to a file?"։ Սեղմեք "No" կոՃակը։ Ընտրեք "sequences.fas" ֆայլը և սեղմեք "Open" կոՃակը, որպեսզի ներմուծեք հաջորդականությունները ծրագրի մեջ։
- 5. Ընտրեք *Edit* ներդիրի *Select All* հրամանը, որպեսզի նշեք ներմուծված հաջորդականությունների բոլոր դիրքերը։
- 6. Ընտրեք *Alignment* ներդիրի *Align by ClustalW* հրամանը, որպեսզի հավասարեցնեք նշված հաջորդականությունները ըստ ClustalW ալգորիթմի։ Սեղմեք **Ok**, որպեսզի ընդունեք սկզբնադիր կարգավորումները։
- 7. Պահպանեք հավասարեցված հաջորդականությունները՝ ընտրելով Data ներդիրի Export Alignment խմբի MEGA format հրամանը։ Անվանեք ֆայլը "ձեր կոդը.meg" (օրինակ՝ օլիմպիադայի մասնակցի ձեր կոդն է 12345, հետևաբար անվանումը կլինի՝ "12345.meg")։ Սեղմեք Save կոձակը։ Կհայտնվի Title պատուհանը. կրկին ներմուծեք ձեր կոդը և սեղմեք Ok կոձակը։ Այնուհետև կհայտնվի ևս մի պատուհան, որը հարցնում է "Protein-coding nucleotide sequence data?"։ Հաստատեք՝ սեղմելով "Yes" կոձակը։
- 8. Այսպիսով կատարեցիք sequences.fas ֆայլում պահպանված սեկվենավորված հաջորդականությունների հավասարեցում և պահպանեցիք հավասարեցված

հաջորդականությունները **ձեր կոդը.meg** ֆայլում **(4 միավոր)**։ Այժմ մանրամասն ուսումնասիրեք հավասարեցված հաջորդականությունները։ Հաջորդականությունում հիմքի հերթական համարը որոշելու համար անհրաժեշտ է սեղմել այդ հիմքի վրա. հերթական համարը կերևա պատուհանի ստորին ձախ հատվածում, ինչպես ցույց է տրված ստորև 21-րդ դիրքում գտնվող հիմքի համար.

Site #21

Պատասխանեք 1.1-1.4 հարցերին։

- 9. Ելք գործեք *Alignment Explorer* ենթապատուհանից՝ ընտրելով **Data** ներդիրի *Quit* հրամանը։
- 10. Ելք գործեք MEGA ծրագրից` սեղմելով ${\bf X}$ կո
մակը։

Հարց 1.1 (1 միավոր)

Նշեք հաջորդականությունների 250-260 (ներառյալ) ՆԶ հատվածի ո[°]ր դիրքերում (նշեք հիմքերի հերթական համարները) կա հիմք, որը նույնն է բոլոր տեսակների համար։ Գրեք այդ հերթական համարները պատասխանների թերթիկի համապատասխան դաշտում։

Հարց 1.2 (1 միավոր)

Նշեք այն հիմքը, որը բոլոր տեսակների դեպքում գրված է հարց 1.1-ում որոշված դիրքերից առաջինում։ Գրեք հիմքի սիմվոլը պատասխանների թերթիկի համապատասխան դաշտում։

Հարց 1.3 (1 միավոր)

Գրեք պատասխանների թերթիկի համապատասխան դաշտում այն տեսակի անունը, որի հաջորդականությունը մյուս տեսակների հաջորդականությունների համեմատ ունի ամենաշատ տարբերություններ 300-310 (ներառյալ) ՆԶ հատվածում։ Ասելով՝ տվյալ դիրքում հաջորդականությունը ունի տարբերություն, հասկանում ենք, որ տվյալ դիրքում գտնվող հիմքը տարբերվում է բոլոր տեսակների հաջորդականություններում նույն դիրքում ամենահամախ հանդիպող հիմքից։

Հարց 1.4 (1 միավոր)

Գրեք պատասխանների թերթիկի համապատասխան դաշտում հաջորդականությունը 300-310 (ներառյալ) ՆԶ հատվածում փոփոխությունների ենթարկված այն երկու հիմքերի դիրքերը, որտեղ երկու հիմքերն էլ փոխարինվել են իրենց կոմպլեմենտար հիմքերով դիտարկվող տեսակներից որևէ մեկի հաջորդականությանում։

Մաս 2. (28 միավոր) Ծայրամասային արյան միակորիզ բջիջների դասակարգումը տրանսկրիպտոմային տվյալների հիման վրա

Տրանսկրիպտոմ նշանակում է մեկ բջջի կամ բջիջների խմբի կողմից սինթեզված տրանսկրիպների ամբողջություն, որը ներառում է իՌՆԹ և չկոդավորող ՌՆԹ։ Այս աշխատանքում դուք դասակարգելու եք ծայրամասային արյան միակորիզ բջիջները՝ վերլուծելով նրանց **տրանսկրիպտոմային տվյալները**։ Տվյալները բեռնվել են 10X Genomics-ի կայքից և պարունակում են 2,700 բջիջների Illumina NextSeq 500 երկրորդ սերնդի սեկվենավորման տեխնոլոգիայով սեկվենավորած հաջորդականություններ։ Վերլուծությունը կատարելու համար հետևեք Ընթացակարգ 2-ին։

ԸՆԹԱՅԱԿԱՐԳ 2. Պերիֆերիկ արյան միակորիզ բջիջների դասակարգումը R-studio ծրագրի միջոցով գեների էքսպրեսիայի (արտահայտում) հիման վրա

 Ակտիվացրեք R-Studio ծրագիրը՝ տանելով մկնիկի կուրսորը համակարգչի էկրանի R-Studio պատկերակի վրա և երկու անգամ սեղմեք ձախ ստեղնը։ Կբացվի R-Studio -ի հիմնական պատուհունը, որն ունի հետևյալ տեսքը.

Նկար 1. R-Studio ծրագրի տեսքը։

Կոդը խմբագրելու պատուհանում գրված են հրամանները, որոնք կօգտագործեք առաջադրանքը իրականացնելու համար։ Յուրաքանչյուր հրաման գրված է մեկ առանձին տողի վրա։ <u>Հրամանը կատարելու համար</u> անհրաժեշտ է.

1) ամբողջությամբ ընտրել հրամանի տողը ինչպես ցույց է տրված ստորև (55-րդ տողում գրված հրամանի համար).

```
53 # Դիտել յուրաջանչյուր կլաստերի համար 5 ամենամեծ էջսպրեսիայի ցուցանիշներով գեները:
54 head(Կլաստեր0.ցուցանիշներ, n = 5)
55 head(Կլաստեր1.ցուցանիշներ, n = 5)
56 head(Կլաստեր2.ցուցանիշներ, n = 5)
```

2) սեղմել **Run** կոՃակը, որը ցույց է տրված *Նկար 1*-ում։

R-ծրագրի կառավարակետ պատուհանում կարող եք դիտարկել ընթացիկ հրամանի կատարման գործընթացը։

Աշխատանքային տարածություն պատուհանը ցույց է տալիս ծրագրում առկա ակտիվ փոփոխականները։

Գրաֆիկներ և ֆայլեր պատուհանում կարող եք դիտարկել ձեր կառուցած գրաֆիկները։ Տվյալ պահին ակտիվ գրաֆիկը դիտելու համար անհրաժեշտ է սեղմել **Zoom** կոձակը, որը ցույց է տրված *Նկար 1*-ում։ Ձեր կառուցած նախորդ կամ հաջորդ գրաֆիկը դիտելու համար անհրաժեշտ է սեղմել «*նախորդ*» կամ «*հաջորդ*» *գրաֆիկը*՝ սլաքների տեսք ունեցող կոձակները, որոնք ցույց են տրված են *Նկար 1*-ում։

- R-Studio ծրագրում աշխատելու համար անհրաժեշտ են գործիքներ, որոնք պահվում են գործիքների գրադարաններում։ Գործիքների գրադարանները ներմուծելու համար Ձեզ անհրաժեշտ է <u>հերթով</u> կատարել 2 և 3 տողերում գրված հրամանները։
- Այժմ անհրաժեշտ է ներմուծել ծայրամասային արյան միակորիզ բջիջների գենային էքսպրեսիայի տվյալները։ <u>Հերթով</u> կատարեք 7 և 8 տողում գրված հրամանները։
- Շնորհավորում ենք, տվյալները համակարգում են։ Սակայն վերլուծելուց առաջ դրանք անհրաժեշտ է ենթարկել նախնական մշակման և նորմալացնել՝ <u>հերթով</u> կատարելով 12-15 տողերում գրված հրամանները։
- 5. Այժմ սկսեք վերլուծել տվյալները։ Նախ պարզեք, թե որ 10 գեներից յուրաքանչյուրի էքսպրեսիան է ամենաշատը տարբերվում հետազոտվող բջիջներում` կատարելով **19**-րդ տողում գրված հրամանը։
- Կառուցեք գրաֆիկ, որը ցույց է տալիս գեների էքսպրեսիայի ստանդարտացված դիսպերսիայի կախումը (y-փոփոխական) էքսպրեսիայի արժեքի թվաբանական միջինից (x-փոփոխական)՝ <u>հերթով</u> կատարելով 23-55 տողերում գրված հրամանները։
- 7. 6-րդ քայլում կառուցած գրաֆիկը դիտելու համար սեղմեք Zoom կոձակը։ Կբացվի Plot Zoom ենթապատուհանը։ Մանրամասն ուսումնասիրեք գրաֆիկը։ Յուրաքանչյուր կետ ներկայացնում մեկ գեն։ Ուշադրություն դարձրեք, որ որոշ կետերի վրա գրված են սիմվոլներ։ Դրանք 5-րդ քայլում որոշված 10-ը գեների սիմվոլներն են։ Պատասխանեք 2.1-2.3 Հարցերին։ Այնուհետև փակեք Plot Zoom ենթապատուհանը` սեղմելով X կոՃակը։
- Հաջորդ քայլով կատարեք բջիջների խմբերի կլաստերավորում (խմբավորում)՝ հիմնվելով տրանսկրիպտոմի տվյալների վրա։ Այդ նպատակով <u>հերթով</u> կատարեք 29-34 տողերում գրված հրամանները։ Հաշվի առեք, որ հրամանների կատարումը կարող է տևել մինչն 20 վայրկյան։ Եղեք համբերատար։

- 9. Կառուցեք 8-րդ քայլում ստեղծված կլաստերների գծապատկերը` կատարելով **38** տողում գրված հրամանը։
- 10. Դիտեք 9-րդ քայլում կառուցած գծապատկերը` սեղմելով **Zoom** կոձակը։ Կբացվի **Plot Zoom** ենթապատուհանը։ Մանրամասն ուսումնասիրեք գծապատկերը։ Յուրաքանչյուր կետ ներկայացնում մեկ բջիջ, յուրաքանչյուր գույն` մեկ կլաստեր (խումբ)։ Իրար առավել մոտ տեղադրված կետերը վկայում են նմանատիպ էքսպրեսիայի ընդհանուր պատկերի մասին։ Պատասխանեք **2.4 Հարցին։** Փակեք **Plot Zoom** ենթապատուհանը` սեղմելով **X կոՃակը**։
- 11. Հաշվարկեք՝ ո՞ր գեներն են ամենաշատը էքսպրեսիայի ենթարված **թիվ 8 խմբում**՝ կատարելով **50** տողում գրված հրամանը։ Հաշվի առեք, որ հրամանի կատարումը կարող է տևել **մինչև 50 վայրկյան**։ Եղեք համբերատար։
- 12. Թիվ 8 խմբի բջիջներում 5 ամենաբարձր էքսպրեսիայի արժեք ունեցեղ գեների սիմվոլները դիտելու համար կատարեք 62 տողում գրված հրամանը։ R-ծրագրի կառավարակետում կհայտնվեն ձեզ հետաքրքրող գեների սիմվոլները` էքսպրեսիայի արժեքի նվազման կարգով։ Պատասխանեք Հարց 2.5-ին։
- 13. Հաշվարկեք՝ ո՞ր գեներն են ամենաշատը <u>ՏԱՐԲԵՐԱԿՎԱԾ ԷՔՍՊՐԵՍԻԱՅԻ</u> ենթարվել **թիվ 8 խմբում**՝ կատարելով **74** տողում գրված հրամանը։ Հաշվի առեք, որ հրամանի կատարումը կարող է տևել **մինչև 5 վայրկյան**։ Եղեք համբերատար։
- 14. Թիվ 8 խմբի բջիջներում 5 ամենաբարձր <u>ՏԱՐԲԵՐԱԿՎԱԾ ԷՔՍՊՐԵՍԻԱՅԻ</u> արժեք ունեցեղ գեների սիմվոլները դիտելու համար կատարեք 86 տողում գրված հրամանը։ R-ծրագրի կառավարակետում կհայտնվեն ձեզ հետաքրքրող գեների սիմվոլները` էքսպրեսիայի արժեքի նվազման կարգով։ Պատասխանեք hարց 2.6ին և hարց 2.7-ին։ Եթե hարց 2.7-ին Ձեր տված պատասխանը A-ն է, շարունակեք քայլ 15-ից։ Եթե hարց 2.7-ին Ձեր տված պատասխանը B-ն է, շարունակեք քայլ 17ից։
- 15. Հաշվարկեք՝ ո՞ր գեներն են ամենաշատ էքսպրեսիայի ենթարված թիվ 0-7 խմբերից յուրաքանչյուրում՝ <u>հերթով</u> կատարելով 42-49 տողերում գրված հրամանները։ Հաշվի առեք, որ մեկ հրամանի կատարումը կարող է տևել **մինչև 40 վայրկյան**։ Եղեք համբերատար։
- 16. Թիվ 0-7 խմբերի բջիջներում 5 ամենաբարձր էքսպրեսիայի արժեք ունեցող գեների սիմվոլները դիտելու համար <u>հերթով</u> կատարեք 52-61 տողերում գրված հրամանները։ Յուրաքանչյուր հրամանից հետո R-ծրագրի կառավարակետում կհայտնվեն ձեզ հետաքրքրող գեների սիմվոլները՝ էքսպրեսիայի արժեքի նվազման կարգով։ Պատասխանեք 2.8-2.9 հարցերին։ Շարունակեք քայլ 19-ից։
- 17. Հաշվարկեք՝ որ գեներն են ամենաշատը <u>ՏԱՐԲԵՐԱԿՎԱԾ ԷՔՍՊՐԵՍԻԱՅԻ</u> ենթարվել **թիվ 0-7 խմբերից** յուրաքանչյուրում` <u>հերթով</u> կատարելով **66-73** տողերում գրված հրամանները։ Հաշվի առեք, որ մեկ հրամանի կատարումը կարող է տևել **մինչև 40 վայրկյան**։ Եղեք համբերատար։
- 18. Թիվ 0-7 խմբերի բջիջներում 5 ամենաբարձր <u>ՏԱՐԲԵՐԱԿՎԱԾ ԷՔՍՊՐԵՍԻԱՅԻ</u> արժեք ունեցեղ գեների սիմվոլները դիտելու համար <u>հերթով</u> կատարեք 78-85 տողերում գրված հրամանները։ Յուրաքանչյուր հրամանից հետո R-ծրագրի կառավարակետում կհայտնվեն ձեզ հետաքրքրող գեների սիմվոլները` <u>ՏԱՐԲԵՐԱԿՎԱԾ</u> էքսպրեսիայի արժեքի նվազման կարգով։ Պատասխանեք 2.8-2.9 Հարցերին։
- 19. Մաս 2-ի <u>ԲՈԼՈՐ</u> հարցերին պատասխանելուց հետո մաքրեք միջավայրը՝ կատարելով **89-91** տողերում գրված հրամանները։

<u>ՈՒՇԱԴՐՈՒԹՅՈՒՆ</u>. միջավայրը չմաքրելու պարագայում Դուք <u>կկորցնեք 2</u> <u>միավոր</u>։

Հարց 2.1 (1 միավոր)

Հիմնվելով գրաֆիկի վրա՝ պատասխանների թերթիկում լրացրեք այն 10 գեների սիմվոլները, որոնցից յուրաքանչյուրի էքսպրեսիան ամենաշատն է տարբերվում հետազոտվող բջիջների խմբերում։

Հարց 2.2 (1 միավոր)

Համեմատելով հետազոտվող բջիջների խմբերը, պատասխանների թերթիկի համապատասխան դաշտում գրեք 2.1 հարցում նշված գեներից որի՞ էքսպրեսիան է ամենաշատը տարբերվում։

Հարց 2.3 (1 միավոր)

2.1 հարցում նշված գեներից ո[°]րի միջին էքսպրեսիան է ամենաբարձրը։

Հարց 2.4 (2 միավոր)

Բջիջների ո[°]ր խմբերում է էքսպրեսիայի ընդհանուր պատկերը զգալիորեն տարբերվում մնացած բոլոր խմբերում էքսպրեսիայի պատկերներից։

Հարց 2.5 (1 միավոր)

Որո[°]նք են **թիվ 8 խմբի** գեներում էքսպրեսիայի ամենաբարձր արժեք ունեցող 5 գեների սիմվոլները։

Հարց 2.6 (1 միավոր)

Որո[°]նք են **թիվ 8 խմբի** գեներում <u>ՏԱՐԲԵՐԱԿՎԱԾ ԷՔՍՊՐԵՍԻԱՅԻ</u> ամենաբարձր արժեք ունեցող 5 գեների սիմվոլները։

Հարց 2.7 (2 միավոր)

Ընտրեք, թե ստորև բերված տարբերակներից որի[°] պետք է հիմնվել բջիջների դասակարգումը կատարելու համար (նշեք պատասխանների թերթիկի համապատասխան դաշտը).

A) բջիջներում գեների էքսպրեսիայի վրա

B) գեների տարբերակված էքսպրեսիայի վրա

Հարց 2.8 (5 միավոր)

Եթե *հարց 2.7-ում* ընտրել եք **A** պատասխանը, ապա գրեք **0-7** յուրաքանչյուր խմբի համար էքսպրեսիայի ամենաբարձր արժեքը ունեցող գենի սիմվոլը։

Եթե *հարց 2.7-ում* ընտրել եք **B** պատասխանը, ապա գրեք **0-7** յուրաքանչյուր խմբի համար <u>ՏԱՐԲԵՐԱԿՎԱԾ ԷՔՍՊՐԵՍԻԱՅԻ</u> ամենաբարձր արժեքը ունեցող գենի սիմվոլը։

Պատասխանները գրանցեք պատասխանների թերթիկի համապատասխան դաշտերում։

Հարց 2.9 (9 միավոր)

Հիմնվելով ձեր ստացած տվյալների և **Հավելված 2-ի** տեղեկությունների վրա պատասխանների թերթիկում զուգադրեք խմբերի համարները **(0-8)** ծայրամասային արյան միակորիզ բջիջների հետևյալ տեսակների հետ **(A-I).**

A) CD14+ Մոնոցիտ	D)Թրոմբոցիտ	G) Հիշողության T-հելփեր
B) FCGR3A+ Մոնոցիտ	E) T-հելփեր	H) B բջիջ
C) Դենդրիտային բջիջ	F) T-Քիլեր	I) Բնական քիլեր

Հարց 2.10 (5 միավոր)

Նկար 2-ում պատկերված է իմունային պատասխանի սխեման, սակայն գործընթացին մասնակցող բջիջների փոխարեն գրված են **A-D** տառերը։

Նկար 2. Իմունային պատասխանի սխեմա։

Հարց 2.8-ում Ձեր տված պատասխանների և ունեցած գիտելիքների հիման վրա պատասխանների թերթիկի համապատասխան դաշտերում լրացրեք յուրաքանչյուր տառին (A-E) համապատասխանող բջջների խմբի համարը (0-8)։

Մաս 3. (14 միավոր) Մարգագետնային բույսերի տեսակային կազմի ուսումնասիրությունը

Քսերոֆիլային լյոսային մարգագետինները Կենտրոնական Եվրոպայում տարածված, հարուստ տեսակային բազմազանություն ունեցող բույսերի ասոցացիաներ են։ Այնտեղ աՃող հիմնական բուսատեսակները չորադիմացկուն խոտաբույսեր են։ Դրանց արոտացված և թեթևակիորեն դեգրադացված համակեցությունները բնութագրվում են Festuca pseudovina (շյուղախոտ), Stipa capillata (փետրախոտ) և Cynodon dactylon (արվանտակ, շնատամ) տեսակների առկայությամբ։ Այս առաջադրանքում դուք որոշելու եք երեք խոտաբույսերի հարաբերական տարածվածությունը և նրանց միջև փոխհարաբերության առկայությունը՝ հիմնվելով դաշտային ուսումնասիրության վրա։ Դաշտում նմուշառման ժամանակ մենք դիտարկել ենք մի գծով շարված 500 հաջորդական քառակուսիներում հանդիպող տեսակները։ Քառակուսիների չափերը եղել են 10x10սմ։

Հարց 3.1 (6 միավոր)

Ձեր պատասխանների թերթիկում լրացրեք համակցությունների երեք աղյուսակները, որոնք ներկայացնում են երեք տեսակներից ամեն զույգի համատեղ հանդիպելու դեպքերը (a-d, ինչպես նաեւ համապատասխան տողի և սյունակի գումարները) առաջին 40 քառակուսիներում (Աղյուսակ 1)։ Յուրաքանչյուր վանդակում գրված տառը (a, b, c, d) ծառայում է համատեղ հանդիպելու դեպքերի քանակը նկարագրող փոփոխականը նշելու համար (a =քառակուսիների թիվը, որտեղ երկու տեսակներն էլ առկա են եղել, b b c =քառակուսիների թիվը, որտեղից առկա է եղել տեսակներից միայն մեկը, d =քառակուսիների թիվը, որտեղից առկա է եղել տեսակներից միայն մեկը, d =քառակուսիների թիվը, որտեղից առկա է եղել տեսակներից միայն մեկը, d =քառակուսիների թիվը, որտեղ հետազոտվող տեսակներից ոչ մեկը չի հայտնաբերվել, + առկա, - բացակա)։ n-ը ևմուշառման միավորների՝ քառակուսիների թիվն է, որը այս դեպքում 40 է։ Ուսումնասիրվել է բոլոր տեսակների առկայությունը։ Ստորև բերված աղյուսակում ցույց է տրված ուսումնասիրված երեք տեսակների հանդիպման դեպքերը առաջին 40 քառակուսիներում։ 1 արժեքը նշանակում է, որ տեսակը առկա է եղել, 0-ն՝ տվյալ տեսակը չի հանդիպել։

Festuca pseudovina	
(շյուղախոտ)	
Stipa capillata	01100 11101 11010 10000 11110 01111 10110 00010
(փետրախոտ)	
Cynodon dactylon	11000 00000 00010 00000 01000 00000 00000
(արվանտակ, շնատամ)	

Աղյուսակ 1. Առաջին 40 քառակուսիներում տեսակների առկայության տվյալները։

Տեսակների տարածական կառուցվածքի փոխհարաբերության վերաբերյալ հետևությունները արվել են ամբողջ հետազոտվող տիրույթում (500 քառակուսի) տեսակների առկայության տվյալների հիման վրա։ Փոխհարաբերությունը վերլուծվել է χ2 (խի քառակուսի)-թեստի միջոցով` դիտարկելով համատեղ հանդիպելիու դրական կամ բացասական փոխհարաբերությունը <u>կամ փոխհարաբերությունը</u> <u>բացակայությունը</u>։ Բոլոր դիտարկված քառակուսիներում (n=500) երեք տեսակներից ամեն զույգի համատեղ հանդիպելու աղյուսակները հետևյալն են.

		Festuca		
		+	-	
Stipa	+	<i>a</i> = 22	<i>b</i> = 271	a+b = 293
	_	<i>c</i> = 90	<i>d</i> = 117	<i>c</i> + <i>d</i> = 207
		<i>a</i> + <i>c</i> = 112	<i>b</i> + <i>d</i> = 388	<i>n</i> = 500

		Festuca		
		+	_	
Cynodon	+	<i>a</i> = 130	<i>b</i> = 163	a+b = 293
	_	<i>c</i> = 24	<i>d</i> = 183	<i>c</i> + <i>d</i> = 207
		<i>a</i> + <i>c</i> = 154	<i>b</i> + <i>d</i> = 346	<i>n</i> = 500

		Cynodon		
		+	_	
	+	<i>a</i> = 14	<i>b</i> = 140	<i>a+b</i> = 154
Stipa	_	<i>c</i> = 98	<i>d</i> = 248	<i>c</i> + <i>d</i> = 346
		<i>a</i> + <i>c</i> = 112	<i>b</i> + <i>d</i> = 388	<i>n</i> = 500

Հարց 3.2 (1 միավոր)

Որոշեք χ2-թեստի համար ազատության աստիձանների թիվը (df) չորս դաշտ ունեցող համակցման աղյուսակում և գրեք այն պատասխանների թերթիկի համապատասխան վանդակում։

Հարց 3.3 (2 միավոր)

Օգտվելով տրված բանաձևից, հաշվեք χ^2 -ու արժեքը վերջին համակցման աղյուսակի համար` կլորացնելով այն երկու տասնորդական նիշի Ճշտությամբ, և գրեք արդյունքը պատասխանների թերթիկում։ Առաջին երկու աղյուսակների համար χ^2 -երի արժեքները ձեզ համար լրացված են։

$$\chi^2 = \frac{(n-1)(ad-bc)^2}{(a+b)(c+d)(a+c)(b+d)}$$

Հավասարում 1. χ2-ու բանաձեւը, որտեղ առանձին տառերը վերաբերում են համակցման աղյուսակի նշագրված դաշտերին (a-d)։

Հարց 3.4 (2 միավոր)

Նշեք վիճակագրական նշանակալիության մակարդակը (p-արժեքը)՝ հիմնվելով χ2-ու աղյուսակի վրա (Աղյուսակ 2) եւ գրելով (А-D) տառերից մեկը ձեր պատասխանների թերթիկի համապատասխան վանդակում։

	p-արժեքը			
	Α	В	С	D
df	p>0,05	0,05≥p>0,01	0,01≥p>0,001	0,001≥p
1	χ ² <3,841	3,841≤ <i>χ</i> ²<6,635	6,635≤ χ ²<10,83	$10,83 \le \chi^2$
2	χ²<5,991	$5,991 \le \chi^2 < 9,210$	9,210≤ <i>χ</i> ²<13,82	$13,82 \le \chi^2$
3	χ²<7,815	$7,815 \le \chi^2 < 11,35$	11,35≤ <i>χ</i> ²<16,27	$16,27 \le \chi^2$
4	χ²<9,488	9,488 $\leq \chi^2 < 13,28$	$13,28 \le \chi^2 < 18,47$	$18,47 \le \chi^2$
5	χ ² <11,07	$11,07 \le \chi^2 < 15,09$	$15,09 \le \chi^2 < 20,52$	$20,52 \le \chi^2$
6	χ²<12,59	12,59≤ <i>χ</i> ²<16,81	$16,81 \le \chi^2 < 22,46$	22,46 $\leq \chi^2$
7	χ²<14,07	$14,07 \le \chi^2 < 18,48$	$18,48 \le \chi^2 < 24,32$	$24,32 \le \chi^2$
8	χ ² <15,51	$15,51 \le \chi^2 < 20,09$	$20,09 \le \chi^2 < 26,13$	26,13 χ^2
9	χ²<16,92	$16,92 \le \chi^2 < 21,67$	21,67≤ χ ²<27,88	$27,88 \le \chi^2$
10	χ²<18,31	$18,31 \le \chi^2 < 23,21$	23,21≤ <i>χ</i> ² <29,59	$29,59 \le \chi^2$

Աղյուսակ 2. χ² -ի բաշխման կրիտիկական արժեքները ազատության տարբեր աստիձանների (df) դեպքում։

Հարց 3.5 (3 միավոր)

Հիմնվելով վերը նշվածի վրա, պատասխանների թերթիկում X-ով գնահատեք տարածական փոխհարաբերությունները (1-3) խոտաբույսերի երեք տեսակների միջն։

- A. դրական փոխհարաբերություն
- B. անկախ
- C. բացասական փոխհարաբերություն

